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Instabilities of a three-dimensional localized spot
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We investigate the behavior of localized spots in three spatial dimensions in a model two-variable system

describing the Belousov-Zhabotinsky reaction in water-in-oil microemulsion. We find three types of instabili-
ties: splitting of a single spot (i) into two spots, (ii) into a torus, and (iii) into an unstable shell that splits almost

immediately to six or eight new spots.
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I. INTRODUCTION

In general, instabilities such as the Turing or wave insta-
bility can be classified as either supercritical or subcritical. In
reaction-diffusion systems, supercritical instabilities of a ho-
mogeneous steady state (SS) can give rise to small-amplitude
patterns, while subcritical instabilities are able to produce
large-amplitude structures that can survive far from the bi-
furcation point [1]. In the case of subcritical instability, there
is typically a range of parameters in which the homogeneous
SS and a patterned state can coexist, with the homogenous
SS remaining stable to small-amplitude spatial perturbations,
while large-amplitude perturbations can induce patterns.

Localized spots are one example of such large-amplitude
structures [2]. They may be stationary, traveling (stationary
in a moving coordinate system) [3,4], or oscillatory (oscil-
lons) [1]. Their profile does not depend on either the shape of
the system or its size as long as the system dimensions are
much larger than the width of a spot. To produce a localized
spot from a stationary homogeneous SS, one must apply a
finite perturbation of sufficient amplitude and appropriate
shape. Usually the extent and shape of the perturbation
should be comparable to those of the spot. Perturbations that
do not have the correct size and shape decay, and the system
comes back to the SS. Quasi-two-dimensional (quasi-2D) lo-
calized spots, both stationary and oscillatory, have been ob-
served experimentally in the Belousov-Zhabotinsky (BZ) re-
action in water-in-oil microemulsion [1,5]. This system is
often referred to as the BZ-aerosol OT (AOT) system, where
AOT is the common name for the surfactant, sodium bis(2-
ethylhexyl) sulfosuccinate, used for preparation of the micro-
emulsion.

Localized dissipative spots can be used for creating
memory devices [6,7] since they can store information in
much the same manner as an electronic memory, though they
require a flow of fresh reactants to sustain them. For this
reason, and because of the inherent interest of localized pat-
terns, it is important to understand the stability properties of
localized spots in both two- and three-dimensional (3D) sys-
tems. The case of three dimensions is especially interesting
since the information capacity of such a chemical memory in
three dimensions is significantly larger than in two dimen-
sions.

Instabilities of large-amplitude patterns such as localized
spots, Turing patterns, or traveling waves (planar or circular)
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are a productive source of new patterns. For example, con-
tinuous waves emitted when Turing spots in the chlorine
dioxide-iodine-malonic acid (CDIMA) reaction become un-
stable produce segmented waves and eventually spatiotem-
poral chaos [8]. Instabilities of the planar or spiral 2D waves
observed in the BZ-AOT system lead to stable dash waves
[9].

By their nature, localized structures are ideally suited to
the creation and control of stationary structures of various
shapes [6], in particular those which lack symmetry. They
may also be important in understanding morphogenetic pro-
cesses in biological development.

Simulation of 3D patterns can be quite time consuming,
and there is only a limited number of works in which 3D
patterns have been studied [10-22]. Instabilities of 2D and
3D cylindrically and spherically symmetric localized pat-
terns with sharp boundaries have been investigated by linear
stability analysis for a generic two-activator-inhibitor
reaction-diffusion system [23-25]. Here we focus on patterns
arising from instabilities of a localized spot in the 3D domain
using a two-variable model of the BZ-AOT system. Station-
ary 2D localized spots in this model have been studied pre-
viously by both numerical simulation [6] and linear stability
analysis [26].

We choose the BZ-AOT system (and the corresponding
model) because this is the most promising reaction-diffusion
system for generating stationary 3D patterns. We have al-
ready observed 3D dash waves and Turing patterns visually
in our laboratory, but we are still working to develop a viable
method to reconstruct the 3D patterns from the complex 2D
images we have obtained. Such systems as the CDIMA or
ferrocyanide-iodide-sulfite [27] reactions, which are able to
produce patterns in a thin quasi-2D gel layer in a continu-
ously fed unstirred reactor, require continuous feeding,
which is difficult to implement in a 3D configuration. The
classic BZ reaction in aqueous solution is a good system for
studying 3D scroll waves or spatiotemporal chaotic waves
[28-31], but stationary 3D patterns have not been observed
in this system, and, because the key species have very simi-
lar diffusion coefficients, it seems unlikely that they will be.

In Sec. II, we describe our model. Then in Sec. III we
explain our methods: numerical simulation and linear stabil-
ity analysis of a localized spot. In Sec. IV, we present our
results, including separate investigations of cylindrically and
spherically symmetric solutions. We conclude with Sec. V,
where we compare our results for a localized 3D spot to the
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FIG. 1. Nullclines dv/dt=0 (solid and dotted lines) and du/dt
=0 (dashed line) for system (1) at m=10, f=1.85, ¢=0.004, &,
=0.02, and i3=0.01 (solid line) and 0.02 (dotted line). Note that the
horizontal axis has a logarithmic scale.

analogous results in two dimensions and extrapolate our
findings to 3D Turing patterns as well.

II. MODEL

Our Oregonator-based model (1) belongs to a broad class
of activator-inhibitor models. It can reproduce many of the
2D spatial structures observed in the BZ-AOT system: Tur-
ing patterns and large-amplitude patterns emerging from in-
stabilities of planar, circular, and spiral waves and stationary
localized spots [5,6]. The model equations are

v 1 -v 1 —mu
—=—([fu+i0(1—mu)]q +v —vz>+Av,
at € qg+v 1-mu+eg
(1a)
d 1-
o e u+dAu, (1b)

=
ot 1 —mu+¢

where v (activator) is the dimensionless concentration of
bromous acid HBrO, and u (inhibitor) is that of the oxidized
form of the catalyst. We will assume that the catalyst is the
photosensitive complex [Ru(bpy);]**, where
bpy=2,2'-bipyridine.

In this study, we fix the parameters m, f, g, and g; at the
values used previously for the 2D case [6] (m=10, f=1.85,
¢=0.004, and £,;=0.02). For these parameter values, the
zero-dimensional (0D) version of Eq. (1) (without diffusion
terms) has only one SS, which lies close to the fully reduced
state of the catalyst. We will vary the parameters iy, €, and d.
We choose i, which corresponds to the light intensity, to lie
in the interval [0.005, 0.06]. For i, greater than 0.06, local-
ized spots emerge at too large a value of d to be experimen-
tally plausible. In the chosen interval, the SS is stable and
excitable (see nullclines in Fig. 1). The threshold of excit-
ability of system (1) is given approximately by the length of
the horizontal interval between the SS and the middle branch
of the v nullcline (solid and dotted lines in Fig. 1). The
system is less excitable (the threshold of excitation is
greater) for larger i, (see Fig. 1) and larger e. We vary &,
which is a function of the rate constants and the concentra-
tions of the BZ reactants [6], malonic acid, sulfuric acid, and
bromate, between 0.1 and 1. In the classic aqueous BZ reac-
tion, & usually takes much smaller values, but for model (1)
of the BZ-AOT system, this range of & is reasonable. The
ratio of diffusion coefficients d=D, /D, is varied between 1
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and 50 [localized spots and Turing instabilities can appear in
model (1) only for d>1].

Setting the catalyst diffusion coefficient, D,, larger than
that of HBrO,, D,, may seem counterintuitive. However, as
noted earlier, in this two-variable activator-inhibitor model,
the catalyst plays the role of the inhibitor. It therefore adopts
the diffusion rates of the actual inhibitors, Br~ and Br,. In the
BZ-AOT system, the diffusion rate of Br,, w, a species
soluble in the oil phase, is much larger than the diffusion rate
of HBrO,, a species that resides in the large water droplets.
The ratio D,>D, can be deduced from a more general
model that was used to describe packet waves in the BZ-
AOT system [32],

dv 1 -v 1 —mu

—= —([fu+ io(1 —mu)]q +v —U2>

aT &3 q+v 1 —mu+¢g;
+D,Av, (2a)
Ju 1 —mu

=v————u—oau+yw+D,Au, 2b
ar l—-mu+eg; mw (26)

aw

— =(au—yw)/ey + D,,Aw, (2¢)

aT
where D,,>D,,D,. If w is a fast variable (which requires
that y/e,> 1 +a), then we can assume quasiequilibrium for
Eq. (2¢) and write

w=(a/yu. (3)
Summing Eq. (2b) and &, times (2c), we get
du + 1-
(1 + 2ow) =v s D, Au+&,D,Aw, (4)
ar 1-—mu+e¢g;

and using Eq. (3), we finally obtain

du 1 —mu a
—=\lv—————-u L +&,— |+ D, pAu, (5)
aT 1 —mu+ &g b% ’

where
o o
Du,eff: Du + SZ_DW 1+ Er— |. (6)
Y Y

With the scaling of time and space as 7=(1+&,a/vy)r and
x'=[D,(1+&,a/vy)]"*x, we get Egs. (1a) and (1b) from Egs.
(2a) and (5), where d=D,, /D, and 1/e=(1+g,a/7y)/e;.
D, .sr is always greater than D, if D,,>D,. In our system,
D,>D,, sod>1, since D,=D,.

u»

III. METHODS

Now we return to system (1). We consider only parameter
values d, iy, and e that do not give either a homogeneous SS
(at any initial conditions) or a Turing instability. We solve
system (1) numerically in a box of size L,XL,XL, with
zero-flux (Neumann) boundary conditions (if L,=L,=L., we
refer to this box as a 3D cubic domain). The values of L, and
L, are always large compared to the radius Rg of a localized
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spot, so that spot behavior is independent of L, and L,, while
L. is slightly (one to three times) larger than Rg in the case of
cylindrically symmetric solutions to Eq. (1), and L_> Ry for
spherically symmetric solutions. Our initial conditions are
symmetric with respect to the center of the box,

v=v, u=uy for r=R,

and v=v,, wu=uy, for r>R,, (7a)
v=v, u=uy for p=R,

and v=v,, u=u, for p>R,, (7b)

where (vg,uo) is the homogenous SS, r?=(x—L,/2)%+(y
—L,/2)*+(z-L,/2)* and p*=(x—L,/2)*+(y-L,/2)* in the
case of spherically and cylindrically symmetric perturba-
tions, respectively, Up is the size of the perturbation, which
exceeds the excitation threshold, and Rp is the radius of the
perturbation. As a rule, the initial perturbation should have a
radius comparable to that of a stationary localized spot. If R,
is significantly larger or smaller than Rg, the spot does not
emerge from the homogeneous SS.

We solve system (1) numerically in the box domain using
the finite difference, alternative direction, implicit (ADI)
Crank-Nicolson algorithm [33] for the diffusion terms and
the fourth-order Runga-Kutta algorithm for the kinetic terms.
We employ a time step in the range 0.01 =Ar=0.05 and a
spatial step Ax=Ay=Az between 0.1 and 0.2.

In addition to numerical integration of Eq. (1), we ana-
lyzed the stability of the cylindrically [vy(p),uy(p)] and
spherically [vo(r),ug(r)] symmetric solutions of Eq. (1) by
linear stability analysis in cylindrical (p,¢,z) and spherical
(r,0,¢) coordinate systems, respectively. The analysis,
which is straightforward, is outlined in the supplementary
information [34].

For the sake of simplicity, we use the term “nR solution”
to signify the solution to Eq. (1) with only the radial part of
the Laplacian in the cylindrical (n=2) and spherical (n=3)
coordinate systems. We examine the stability of 2R and 3R
solutions in cylindrical and spherical coordinate systems, re-
spectively. Note that spherically symmetrical solutions can
emerge in the system spontaneously (due to a large perturba-
tion or a change in parameters), while cylindrically symmet-
ric solutions can be generated, for example, with a perturba-
tion by a narrow light beam.

IV. RESULTS

The simplest way to link a localized solution in two di-
mensions [6] to a related solution in three dimensions is to
add an additional “vertical” axis (z) to the 2D system and
analyze how the behavior of this spot as a cylindrically sym-
metric solution (2R) depends on the length of the z axis and
the extent of the localized cylindrical perturbation. Figure 2
shows instabilities of such a localized cylinder
[v(x,y,z,0),ulx,y,z,0)]=[v(p,z,1),u(p,z,1)] in a box where
p*=(x—L,/2)*+(y—L,/2)* For a sufficiently small height of
the box, L., the 3D cylinder is stable [Fig. 2(a)]. If L, in-
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(a) 2o (b)

FIG. 2. Instabilities of localized cylindrical solutions in 3D box
domains. Isosurfaces shown correspond to u=0.04. (a) Stationary
localized cylinder, L,=2.5. (b) Stationary localized hemisphere, L,
=7.5. (c) Transient structure at t=100, L,=22.5. (d) Stationary lo-
calized pattern evolving from (c), t=1200. (e) and (f) Transient
structures at r=(e) 208 and (f) 240; L.=22.5. (g) and (h) Stationary
pattern evolving from (f) /=1200 [(g) lower layer 0<z<<L_/2; (h)
upper layer L,/2<z<L/]. Parameters: e=04, iy=0.01, d
=(a)—(d) 10 and (e)—(h) 20. Note that only the central portion of the
x-y domain with L,=L,=95 is shown. Lengths and times are given
in dimensionless units.

creases, at a critical value of L, (L, ,,=7.5), the 3D cylinder
becomes unstable and transforms to a hemisphere [Fig. 2(b)],
the diameter of which coincides with either the upper or
lower horizontal boundary. For larger L., the initial cylinder
splits into a periodic structure, like that shown in Fig. 2(c),
with several full spheres and two hemispheres. The number
of spheres increases with L,. The transient cylindrically sym-
metric structure shown in Fig. 2(c) is not stable and evolves
in time into the stationary structure shown in Fig. 2(d). The
spatial period A, of such a structure can be defined as the z
component of the distance between centers of neighboring
spheres (or hemispheres). The structure in Fig. 2(d) is com-
posed of two periods, while the structure in Fig. 2(b) con-
tains only half a period. When we increase the diffusion pa-
rameter, d, a different instability of the 2R solution becomes
possible for the same length L_. For example, the transient
structure shown in Fig. 2(e) does not have cylindrical sym-
metry and continues to evolve into one sphere and two hemi-
spheres [see Fig. 2(f)], as in the previous case for smaller
values of d. But here, the structure shown in Fig. 2(f) is not
stationary and undergoes further transformation. Each sphere
and hemisphere splits in two. These splittings continue until
the entire spatial domain is occupied by balls (all hemi-
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FIG. 3. (a) and (b) Dispersion curves for the cylindrically sym-
metric solution for m=0,1,2, d=(a) 10 and (b) 20. (¢) and (d)
Eigenfunctions du corresponding to the maximum of the curve in
(c) (a) for m=0 (k*=0.31) and (d) (b) for m=1 (k*=0.11). Isosur-
faces correspond to du=0.1. Parameters €=0.4, i;=0.01.

spheres eventually transform to spheres). The stationary so-
lution is composed of two layers of spheres. Figures 2(g) and
2(h) show the lower and upper layers, respectively. Both lay-
ers are slightly irregular since the number of nearest neigh-
bors in a horizontal layer ranges from 4 to 6. We have not
investigated the symmetry of the final Turing patterns in this
situation.

The dispersion curve in Fig. 3(a) (solid line) shows that a
2R spot is unstable with respect to axial perturbations [m
=0, where the solutions are proportional to exp(ime)] at
axial wave numbers k” € (0.15,0.6). The wave number ki,
corresponding to the maximum of this curve (close to k°
=0.31), determines the spatial period A, as A,=27/ky,y (
=11.3). The critical value L, ., can be found approximately
as 2/ k;, where k; is the wave number at which the eigen-
value N (at m=0) changes sign from positive to negative
(k*=0.6). The eigenfunction shown in Fig. 3(c) corresponds
to the maximum in the dispersion curve with m=0 [solid line
in Fig. 3(a)], i.e., this cylindrically symmetric solution, with
period A, should grow faster than other cylindrical symmet-
ric perturbations. In Fig. 2(c), we see such a cylindrically
symmetric perturbation with period A,=L./2. The dispersion
curve for angular perturbations with m=1 [dotted line in Fig.
3(a)] has a smaller maximum, which is moreover shifted to
greater periods A,,. Hence, such perturbations can develop
only for larger L, but grow more slowly than perturbations
with m=0. Angular perturbations with m=2 [dotted-dashed
line in Fig. 3(a)] always decay to zero because their eigen-
values are negative at all k.

The 2R solution may also be unstable to angular pertur-
bations. For larger d, the maximum in the dispersion curve
for angular perturbations with m=1 is greater than that for
cylindrically symmetric perturbations (m=0) [see Fig. 3(b)].
Hence, the eigenfunction shown in Fig. 3(d), which is asso-
ciated with the dispersion curve maximum for m=1 in Fig.
3(b) should correspond to the perturbation with the fastest
rate of growth. We see such a developing perturbation in the
numerical simulation in Fig. 2(e). As in the previous case, all
angular perturbations for m=2 disappear since the corre-
sponding eigenvalues [dispersion curve and dotted-dashed
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FIG. 4. Parametric diagrams for system (1) for (a) e=0.4 and (b)
ip=0.01. Dashed line 4 in (a) is the onset of Turing instability.
Dashed line 3 in (b) shows the boundary between a cylindrically
symmetric stationary localized spot and a cylindrically symmetric
stationary ring found by linear stability analysis in three dimen-
sions. Solid lines 1 and 2 correspond to the spherically symmetric
solution. Lines 2 in (a) and (b) separate spherically symmetrical
solutions “3R shell” and “3R spot” found by linear stability analysis
in three dimensions. Lines 1 in (a) and (b) separate domains of
homogeneous SS and localized spots found numerically by simula-
tions in a 3D box. Abbreviations: “SS”=homogeneous SS,
3R spot=spherically symmetric localized stationary spot around r
=0 [shown in (c)], and 3R shell=stationary spherically symmetric
shell close to r=R [shown in (d), where R=100]. Symbols corre-
spond to patterns found in 3D box domain: open circles—3D local-
ized stationary spot, diamond—splitting of a spot to torus [shown
below in Figs. 6(d)-6(f)], triangles—splitting of a spot to two spots
[shown below in Figs. 6(a)-6(c)], and squares—splitting of a spot
to a shell, which immediately splits to six [Fig. 7(b)] or eight [Fig.
7(f)] spots. (c) and (d) Profiles of v (dashed line) and u (solid line)
for stationary localized spherically symmetric solutions of system
(1) at ip=0.01, £=0.4, and d=(c) 10 and (d) 20.

line shown in Figs. 3(a) and 3(b)] assume only negative val-
ues.

Our main results on the stability of a 3D localized spheri-
cal spot in system (1) are summarized in Fig. 4. Lines 1 in
Figs. 4(a) and 4(b) separate domains of the homogeneous SS
and localized stationary spots found in numerical simulations
of system (1) in a 3D box (with large L,, L,, and L,). Solu-
tions with a stationary localized spot are marked by solid
circles in Figs. 4(a) and 4(b), while the homogeneous SS is
marked by crosses. A typical 3D spot localized in the center
of a box or in the center of a 3D ball with radius R (3R spot)
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[see Fig. 4(c)] has width at half height =4. Note that a sta-
tionary spot does not emerge if the radius of perturbation
R,> 6 (at our chosen parameters). Localized spots (3R spots)
can be found, in general, only between lines 1 and 4 in Fig.
4(a), where the dotted line 4 in Fig. 4(a), the onset of Turing
instability, was obtained analytically by linear stability analy-
sis in one dimension. Above and to the left of this line, the
stationary state is unstable to infinitesimal spatial perturba-
tions. The domain of stationary localized spots actually oc-
cupies only part of the region between lines 1 and 4 due to
the instabilities of a localized spot. The Turing instability
area bounded by line 4 is not shown in Fig. 4(b) because it
exists only above d=100, which cannot be achieved experi-
mentally.

A localized spot can lose stability if a parameter of system
(1) changes. For example, a spot can emit a 3D wave if d
exceeds a critical value. This bifurcation is due to a radial
instability. In an infinite domain, a traveling 3D spherical
wave, which looks like a growing 3R shell, is the asymptotic
solution. However, in a finite spherically symmetrical sys-
tem, this 3D wave stops close to the spherical boundary and
forms a stationary spherically symmetrical shell [shown in
Fig. 4(d)]. To find the border in the parameter space between
these two spherically symmetrical solutions (localized spot
and shell), we performed linear stability analysis of a 3R
localized spot. The result of this analysis is shown by line 2
in Figs. 4(a) and 4(b). Analogous to the spot-shell transition
in a spherically symmetric spatial domain, a 2R spot in a
cylindrically symmetrical spatial domain can lose stability by
emitting a cylindrically symmetric 3D propagating wave that
stops close to the boundary and forms a stationary “2R shell”
or, more accurately, a “2R ring.” The onset of this instability,
obtained by linear stability analysis for radial perturbations
in a cylindrically symmetrical system, is shown by dashed
line 3 in Fig. 4(b) [the analogous line in Fig. 4(a) is not
shown].

A spherically symmetric localized spot may also be un-
stable to angular perturbations, characterized by the indices /
and m (see Ref. [34]). Patterns emerging due to such pertur-
bations and found numerically in a 3D box are marked by
triangles, squares, and rhombs in Figs. 4(a) and 4(b). If a 3R
spot is stable to all infinitesimal perturbations, we call it a 3D
localized spot [marked by circles in Figs. 4(a) and 4(b)]. We
discuss these solutions below.

We now compare 3R localized stationary spots [shown in
Fig. 4(c)] and 2R localized stationary spots [shown in Fig.
2(a)]. First, the amplitude (the maximum values of u and v)
of the 3R spot is greater [see projections of concentration
profiles on the (v,u) plane in Fig. 5]. Moreover, the transi-
tion from 2R spot to 2R ring [dashed line 3 in Fig. 4(b)]
occurs at higher values of d than in the case of 3R spots [line
2 in Fig. 4(b)]. The stability curve separating the 3R spot and
3R shell solutions (line 2) is well approximated by d,
«44g,. (for ip=0.01) in Fig. 4(b). For greater i, the slope is
greater (70 for i;=0.03) because d,, increases when i, in-
creases [line 2 in Fig. 4(a)]. The corresponding line for 2R
spots [line 3 in Fig. 4(b)] has a larger slope, d., *96¢,,, i.c.,
the spherically symmetric shell appears for smaller values of
d than the cylindrically symmetric ring when the other pa-
rameters are the same. If we consider only radial perturba-
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FIG. 5. Projections of cylindrically 2R (gray) and spherically 3R
(black) symmetric spots on the (v,u) plane. Parameters: i,=0.01,
£=0.4. Dotted and dashed lines are nullclines, where dv/dt or
du/dt=0 in the 0D system for the activator and the inhibitor, re-
spectively. The upper end of each projection corresponds to concen-
trations at =0 and the lower end to r=100, where the system is in
the SS.

tions, then for a given set of parameters we see following
sequence of solutions: SS—3R spot— 3R shell as d in-
creases [Fig. 4(a) and 4(b)].

As noted above, a localized spot can be unstable to angu-
lar perturbations as well. The three main types of localized
spot instabilities we found in our simulations in a 3D cubic
domain are due to these angular perturbations. They are

(i) spot splitting to two spots [marked by triangles in Figs.
4(a) and 4(b); see also Fig. 6(a)],

(ii) spot deforming to a torus [diamonds in Figs. 4(a) and
4(b); see also Fig. 6(d)], and

(iii) spot deforming to a spherically symmetric shell that
immediately splits to six or eight spots [squares in Figs. 4(a)

(a) (d)

75 “

<.;@>1
=L

FIG. 6. Splitting of 3D localized spot in a cubic domain, L,
=L,=L.=95, for (a)-(c) i(=0.02, d=20 and (d)—(f) i((=0.03, d
=30 at r=(a) 120, (b) 150, (c) 180, (d) 150, (e) 270, and (f) 330.
Note that only part of the computational domain is shown in (a)—(c).
Isosurfaces shown correspond to #=0.06. £=0.4.
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FIG. 7. Splitting of 3D localized spot in 3D cube domain L,
=L,=L,=95 for (a)—(d) i{p=0.01, d=20 and (e)—(g) i(=0.04, d=40
at 1=(a) 62.5, (b) 75, (c) 100, (d) 150, (e) 62.5, (f) 125, and (g) 250.
Only part of the computational domain is shown. Isosurfaces cor-
respond to u=0.06. £e=0.4.

and 4(b); see also Figs. 7(a) and 7(b) and Figs. 7(e) and 7(f),
respectively]. In Figs. 6 and 7, we present and analyze in
detail these three instabilities.

Case (i). As in 2D systems [6,26], we observe a spot
splitting to two spots (replication). In Figs. 6(a)-6(c), three
consecutive replications are shown in the 3D domain. The
initial spot splits to two spots along the direction of replica-
tion [Fig. 6(a)]. The next splitting gives four coplanar spots
and takes place perpendicular to the direction of the first
replication step [Fig. 6(b)]. The direction of the third split-
ting is perpendicular to the plane of the first two, yielding a
cuboid composed of eight spots [Fig. 6(c)].

Case (ii). In the 3D domain we also observe a spot de-
forming to a torus [Fig. 6(d)], which is unstable. After some
time it forms a folded ring-shaped continuous structure [Fig.
6(e)], which deforms further [Fig. 6(f)] and persists until it
approaches the domain walls. Then the structure stops and
breaks into spots.

Case (iii). A localized spot may deform to a 3R shell
[Figs. 7(a) and 7(e)], as can be seen, for example, in the
plane x=L,/2 [Figs. 8(a) and 9(a)] or the plane x=y [Figs.
8(c) and 9(d)]. In all our simulations, the shell was also un-
stable and split almost immediately to six [octahedron, Fig.
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FIG. 8. 2D cross sections of 3D solutions shown in Figs. 7(a)
and 7(b) made across the planes (a) and (b) x=L,/2 and (c) and (d)
x=y. Dark areas correspond to large concentrations of activator v.

7(b)] or eight [cube, Fig. 7(f)] spots. Splitting to six spots
can be viewed as a ring splitting to four spots in each plane,
x=L,/2,y=L,/2, and z=L,/2 [in Fig. 8(b) we show only the
plane x=L /2], and to two spots in the diagonal plane, x=y
[Fig. 8(d)]. The dynamics of spot splitting into eight spots (at
t=125) is illustrated in Fig. 9. In Fig. 9(b), in the plane x
=L,/2, we show splitting to four spots at t=72.5 and then
[Fig. 9(c)], at r=75, the vanishing of these spots. In the di-
agonal plane x=y, the shell splits to two half-circles [Fig.
9(e)] and then each of the half-circles splits to two spots [Fig.
9(f)].

Figures 7(c) and 7(d) show the further evolution of the
six-spot pattern shown in Fig. 7(b). Each of the six spots
deforms to a toroidal structure [Fig. 7(c)], and then each

7 75
@ @
1 Q|4 O
2
Ty 5B g 106
am 750
s { }
25 25
5y 7575 Jeng 1061
“m &G
o
Zz
‘p .o
: g
225 y 75 % +y2  106.1

FIG. 9. 2D cross sections of 3D solutions at =(a) and (d) 62.5,
(b) and (e) 72.5, and (c) and (f) 250 in the planes (a)—(c) x=L,/2
and (d)-(f) x=y. Panels (a) and (d) correspond to Fig. 7(e) and
panels (c) and (f) to Fig. 7(f). Dark areas correspond to large con-
centrations of activator v. Note that the gray scale in panel (c) is
100 times finer than in the other panels (black and white areas
correspond to values v =0.0049 and v = 0.0044, respectively).
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FIG. 10. (a) Dispersion curves for spherically symmetric solu-
tions at ip=0.01, d=17 (stars) and iy=0.05, d=41 (solid circles),
£=0.4. Eigenfunctions &u for (b) [=2, m=1, (¢) [=2, m=0, and (d)
[=4, m=2. Isosurfaces shown in (b)-(d) correspond to du=(b) and
(c) 0.1 and (d) 0.6.

toroid splits into four spots, giving a 24-spot pattern [Fig.
7(d)]. Spots appearing as a result of the splitting of two of
the toroids are marked with dashed trapezoids in Fig. 7(d).

Figure 7(g) shows the further evolution of the eight-spot
pattern shown in Fig. 7(f). Each of the eight spots splits into
three spots. The spots originating from one chosen spot are
marked with a dashed triangle in Fig. 7(g). After three steps
of splitting, we recognize a 24-spot pattern [Fig. 7(g)] with
the same symmetry (and nearly the same locations of spots)
as the pattern shown in Fig. 7(d).

All the instabilities observed in our numerical simulations
can be identified by linear stability analysis. The dispersion
curves in Fig. 10(a) show that a localized spot is stable to
radial perturbation, since A <0 at /=0, but unstable to angu-
lar perturbations with 1 =/=35. The eigenvalue \ is negative
at /=0, but its absolute value is very small at our chosen
parameters i, d, and e, where system (1) is very close to the
boundary between the 3R localized spot and the 3R traveling
shell [lines 2 in Figs. 4(a) and 4(b)]. This choice allows us to
predict the symmetry of the instability of traveling 3R shells
close to this boundary as well. In Figs. 10(b)-10(d) we
present eigenfunctions for several values of m and [ at which
\ is positive. They correspond to a localized spot splitting to
two spots (I=2, m=1), torus (I=2, m=0), and six spots
(I=4, m=2), respectively. In Fig. 10(a), we see that the
maximum in the dispersion curve shifts from /=2 (stars) to-
ward [=4 (solid circles) when d is increased. This result
implies that at small values of d we should observe splitting
to two spots or a torus, while for larger d splitting to six
spots should occur, a sequence found in our numerical simu-
lations [see patterns along the vertical line i,=0.02 in Fig.

4(a)].

V. DISCUSSION AND CONCLUSION

Using model (1) for the BZ-AOT system, we have found
several types of instabilities of a localized spot in three di-
mensions, namely, transformation of a spot (i) to two spots,
(i) to a torus, and (iii) to an unstable shell that splits almost
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immediately to six or eight spots. In case (ii), the torus in-
creases in diameter and transforms to a folded continuous
ring-shaped structure, which can be observed for a relatively
long time before breaking into spots upon colliding with the
boundary. In all three cases, the final stationary spotlike pat-
terns occupy the entire area.

Instabilities of a localized spot, in general, are due to ra-
dial and angular perturbations. If we consider only radial
perturbations (as in our linear stability analysis), then a spot
should lose stability only above line 2 in Figs. 4(a) and 4(b).
Indeed, we do not see black circles (stable spots) above this
line, but we do see triangles and rhombs below it, which
means that a localized spot can lose stability even below this
line as a result of angular perturbations that produce insta-
bilities of types (i) (triangles in Fig. 4) and (ii) (rhombs).

Instability of type (i) was also found in the case of 2D
localized spots [6]. The distortion of a 2D spot into a circular
wave has its analog in three dimensions in the form of insta-
bilities, (ii) torus and (iii) shell-like unstable 3D wave. The
latter instability can be considered an essentially new one
since it results in splitting of a spot to six or eight new spots.

Our theoretical analysis, including the existence of eigen-
functions for different values of / and m, shows that other
types of instabilities are also possible, but we have not ob-
served these instabilities in our computer simulations. This
question requires further investigation, but it seems likely
that the basins of attraction of these instabilities are too small
to be located in a computer experiment, at least in the pa-
rameter ranges we explored.

All three types of instabilities found in our computations
can produce stationary Turing patterns with different symme-
tries. For the parameters used in this study, Turing patterns
are composed of spots only. However, for larger values of &
and d (for example, £=0.4, d=40, and i,=0), Turing insta-
bility can produce stationary spherical shells. If system (1)
has its stationary state close to the fully oxidized state of the
catalyst (large parameter m), stationary Turing patterns can
assume the shape of cylindrical shells and/or lamellar struc-
tures (for still larger d). Investigation (both theoretical and
experimental) of these symmetries and their comparison to
other symmetries of Turing patterns found in three dimen-
sions [15,20,21,35,36] may be the subject of further work.

Localized patterns may be used for the production of cus-
tom asymmetric patterns or for memory devices [6]. The
capacity of such a memory is limited by the width of a spot,
which is proportional to (D,&)"?. Knowledge of the stability
regions of localized stationary structures is necessary in con-
structing such devices.

Localized stationary patterns can also explain the devel-
opment of morphogenetic patterns. They can be created only
if the excitatory signal exceeds a threshold value. In this way,
morphogenetic action can be limited to strictly controlled
areas of a developing organism.
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